书河书屋 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!

他当初刚写第一篇论文的时候,就拟好了这个题目,只是由于数学基础不够,一直停留在构思阶段。

这两天他利用碎片时间,稍微补了补高数知识,这才真正动笔。

江寒将近期一些想法整理了一下,罗列了个大纲出来。

很多机器学习分类算法,都要求假设数据线性可分,“感知机”也不例外。

如果数据不是线性可分的,就必须采用一些特殊的方法,把数据非线性地投射到更高的维度上。

在高维空间里,数据更有可能变成线性可分的,这就是所谓的Cover定理。

对于感知机来说,处理线性不可分的问题,有个最简单的解决办法,那就是把单层感知机拓展为多层感知机。

多层感知机的关键,在于如何训练各层之间的连接权值。

一种常用的办法是只训练某两层间的连接权值,而将其它连接权值进行固定。

可以从数学上证明,对于所有非线性可分的样本集,这种方法都是收敛的。

也可以采用BP技术,也就是另一个世界里,大名鼎鼎的“反向传播神经网络”。

当然,这个世界里,“感知机”都还没正式登场,说这些还有点早。

至于BP技术什么时候问世,基本上是江寒自己说了算……

此外,还可以将数据带到核空间,再进行分类。

在另一个世界里,有很多着名的算法,例如支持向量机(SVM)、径向基神经网络(RBFNN)等等,都采用了所谓的“核方法”。

核方法的核心,是核函数。

工业生产中,常用的核函数有线形核、多项式核、高斯核等等。

所谓核空间,百度百科上说:“核型空间是一类局部凸空间。”

具体来说:如果对零元的任何均衡凸邻域V,存在另一零元的均衡凸邻域U?V,使得典型映射T:XV→XU是核映射,则局部凸空间X称为核型空间。

这里,XU是商空间(X,PU(·)){x|PU(x)=0},而XV是商空间(X,PV(·)){x|PV(x)=0}的完备化空间,PU(·)及PV(·)是由U和V各自产生的闵可夫斯基泛函。

嗯,江寒刚开始看到这个的时候,还真有点懵逼。

所以,再加强一点数学素养,还是很有必要的说……

当然,就算不懂上面的数学表达,一样可以理解核函数的功能。

核函数主要做的事情,就是将样本映射到更高维的空间。

但是,这样做虽然能使样本变得可分,但却会造成维数过高,使得计算量急遽增大。

这就是“高维NP难”问题。

所谓NP难(NP-hard),是指:非确定性多项式问题的大型实例,不能用精确算法求解,只能寻求有效的近似算法。

而解决的办法,也有很多……

好吧,先回到一开始的问题:如何判断数据是线性可分的?

最简单的情况,比如数据向量是一维、二维或者三维的,只要把图像画出来,直观上就能判断出来。

但如果数据向量的维度变得很高,又该怎么办?

答案是检查凸包(convexhull)是否相交。

所谓凸包,简单的说,就是一个凸的闭合曲线(曲面),它刚好包住了所有的数据。

以二维的情况为例,如果我们的数据训练集有两类:M+和M-。

当我们画出两个类的凸包,如果两者不重叠,那么两者线性可分,反之则线性不可分。

靠画出图形,然后用眼睛来判断是否线性可分,虽然比直接看数据更加容易了些……

但好像依然没有解决高维数据的问题?

其实不是这样的。

判断两个凸包是不是有重叠,可以通过判断两个凸包(M+和M-)的边是否相交来实现,而无需把凸包画出来。

要想高效地找到一组数据的凸包,在计算几何中有很多现成的算法:

穷举法、分治法、Jarvis步进法、Graham扫描法、Melkman算法……

江寒在这篇论文中选择的算法,称之为快速凸包算法(quickhull)。

第二个问题,如何高效地判断出,两个凸包的边缘是否相交?

也有许多可选的算法,江寒使用了所谓的扫描线算法(sweepline)。

Quickhull和sweepline的时间复杂度,都是O(nlogn),这是它们被选中的前提条件。

时间复杂度越低,实践中就越有可行性。

但写论文不能这么简单的直接扔出来结论,必须将各种算法的效率和优缺点,全都分析一下。

有必要的时候,还要逐一测试N遍,收集到足够的数据,然后进行横向比较,最后才能得出结论。

江寒理清了思路后,开始打草稿。

首先写下标题,然后是摘要,接下来是正文……

(此处省略2300字。)

江寒正奋笔疾书,黄光明忽然溜溜达达地走了过来。

“江寒,都下课了,还在做题啊?”

黄大学霸说着,探头探脑地瞅了一眼。

结果一看草稿纸上书写的标题,顿时就有点傻眼。

“《如何高效判断数据是否线性可分》……”

这什么玩意?

高中课程里有这种东西吗?

再一看正文,就更加怀疑人生了。

沉默了半天,黄光明还是忍不住问了一句:“你这写的什么东西?”

“偶有所感,随便写写。”江寒笑着回答了一句,然后继续奋笔疾书。

黄光明研究了半天,最终还是放弃了,摇了摇头,转身就走。

他忽然发觉,自己这个传统型学霸,和江寒这种怪物相比,好像已经不在一个频道了……

江寒瞥了眼黄光明的背影,发现他似乎……有点落寞?

忍不住摇了摇头。

好像不小心打击到了别人了,但这次真的是误伤……

又是两节课带课间过去,终于在第四节下课十来分钟后,写完了初稿。

将东西收拾好,就赶往食堂吃饭。

下午,江寒也没浪费时间,写了大半篇“感知机应用”方向的论文,然后在晚自习的时间里,写完了另外一半。

充实的一天就这样过去。

下了晚自习,江寒先找宿管老李,把自己的手机拿了回来。

回到403寝,打开手机,好几条短信跳了出来。

江寒翻看着短信。

最新的一条,赫然是来自银行平台的提醒:【您卡号621xxxxxxxxxxxx的银行卡,存入资金8.4万元。】

“啧,还挺及时的。”江寒赞了一声,放下了手机。

夏如虹按照约定,把专利授权费打过来了。

第一笔资金总共是10万块,到账却只有8万4。

剩余的部分,自然是为国家做了贡献,扣除了应缴纳的税款。

这钱来的正是时候。

江寒的手头正好有点紧,而且还有许多比较急迫的预算。

在江寒的计划里,最近一两个月里,最重要的事情,就是数据实验室。

因为等他出完“多层感知机”的论文,再想搞机器学习方面的研究,就必须大量算力的支持了。

打造数据实验室,硬件设备不能少。

有些不急需的东西,可以等手里活钱多了,再慢慢地置办,但最基本的硬件设施,越快到手越好。

江寒先做了张EXCEL表格,将所需的东西罗列了出来,然后在网上一顿搜寻,找准了采购目标,再按照重要程度,一样样下单。

等过几天有空,就去夏如虹借给自己的车库,看看情况。

然后抓紧时间,把场地收拾出来。

等硬件一到位,就立即把实验室置办起来……

书河书屋推荐阅读:末日:赘婿重生,囤积亿万物资全球高考一宠成瘾:喵系萌妻,甜甜哒至尊兵王解甲国运婚配:开局获得无限宝石掌控全球:从制霸互联网开始神豪返现系统,屌丝逆袭网络神豪:打赏直播十倍返利星空舰队,从数据化开始四合院:我真不是大地主啊执宫我让企鹅悔改,开局直接制作战地都市欲望:疯狂的缠绵倾城凰后:陛下,高高在上大唐:开局与李二断绝父子关系!开局拒绝表白,校花悔断肠建立无上家族,从妩媚女房东开始三分熟蚀骨情:贺先生,别乱来盛宠小娇妻:傲娇总裁别误会财色带女儿净身出户,一首歌唱哭全网乱世谋:江山为祸暮日冬下(gl)首富从1997开始绝恋:相思比梦长开局绑定老婆,我竟有百倍返利?卦妻伏天氏盘点娱乐圈魔咒,明星都被整麻了战狱:我国主的身份让世界颤抖欢宠见家长我送暴徒,警察岳母人麻了纵横两界:我其实不想当帝皇龙族:从只狼归来的路明非一胎二宝:爹地债主我来啦一夜蜜婚:狼性总裁花样宠!战雏盛宠情深:男神让我撩撩!神豪:小学生才做选择,我全都要重回80年代,我觉醒了猎人系统重生1994:大国崛起龙邪四合院:似水年华退役特工:麻烦找上门灵幻穿越:从废柴开始斗破:开局迎娶云韵,我多子多福四合院:契约人生从武动乾坤开始签到
书河书屋搜藏榜:窃国狂赎萌妹穿越之北宋篇许你卸甲归田,你把我女儿泡了?甩了线上男友后我被亲哭了娱乐:重生豪门公子,玩转香江哑小姐,请借一生说话重生国民女神:褚少,心尖宠!我从黑洞归来全能大佬的马甲要藏不住了残暴王爷的黑月光枭宠毒妃:第一小狂妻以财养官:我靠炒股升官发财锦鲤老婆你好甜都市极品村医命运编织者:我能看透御兽命运!重生后我给女配当长姐重生爸铺路,位极人臣不是梦天才国医宁天林冉冉王妃每天都想继承遗产重生豪门:影后谁敢惹大小姐的贴身狂医晋江女穿到□□文草莽年代护花强少在都市聂先生告白请先排号星空舰队,从数据化开始路痴导游照亮他的心港片:我洪兴红棍开局干掉大佬B我能预测未来上神转角遇到总裁朕醉了直播地球之五十亿年重生之牡丹重生年代养大佬鲜肉影帝我煮青梅等你来我以邪恶护万家灯火不灭!犬马她们都说我旺妻太子殿下他对我图谋不轨重生之如歌岁月作精女配把反派撩到手了战婿当道蜜爱100分:首席,强势宠公子玉璃花之双翼
书河书屋最新小说:缅战兵王:从救小姨子开始本人魔女才不是你的魔法少女老师宦海扁舟这次我只想当一个综艺咖为求原谅,女神把我榨干了听说你是主角,我踩的就是主角都市隐藏先知我就想公司破产,奈何员工全是老六!让你接手钢铁厂,你居然卖军火!观想图网游:只有我能看见真实都市重生:我的仙帝修仙路列车求生:开局激活预知模块!异世之帝皇再临满门忠烈你退婚,我重回巅峰你悔啥?我的系统整天都想让我秃头乡野山村神医培养万千神邸,动物园成生命禁区从属性面板开始的超神级学霸糖运连绵:班花同桌又乖又萌我过气爱豆,和天后恋爱很合理吧我最恨的那个女人变成白虎后,逍遥野外山林暑假兼职,你实习单位是749?蒸汽异世:神秘结社华娱:从2016开始的顶流影帝法师进城务工都市寻宝记我按时收费的系统风暴:林风的荣耀崛起重生高考后,我签到成了神级黑客新开辟的钓点,怎么又暴露了你已天下无敌,下山为所欲为吧原来我修为已是这世界极限重生七零开局在破屋一路暴富如果我回到1997年重新开始猫星重生2016,开局狂赚百亿1955重生回到从前薛尘的逆袭修真路什么霸道校花,明明是暖心猫咪重生后,商业帝国信手拈来数据流御兽【异能】炒股赔钱才有生活费我刚中了五万亿不能做主角,那就当魔女高中毕业后,我激活了自律系统神奇世界之旅娱乐圈传奇:从借钱开始高武:满级悟性,一秒屠太古十凶双倍返还神豪系统加身