书河书屋 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!

江寒心中忐忑起来。

难道苏婉莹对我的小心思,根本没有瞒着她?

或者说,没有瞒得过她?

甚至鬼丫头暗地里把下午的事情,透露给了夏雨菲?

以苏婉莹的诡计多端,这也不是完全不可能的!

那么,咱要不要坦白从宽呢?

可万一夏雨菲只是敏感过度,其实什么都不知道……

那岂不是此地无银、作茧自缚?

啊啊啊,有点头疼……

屏幕里。

夏雨菲忽然有点坐不住:“不行,明天我要去你那里一趟。”

江寒无语片刻,说:“想来你就悄悄地来,都说给我知道了,你还能查到些什么?”

“才不管,就要去。”夏雨菲小嘴一扁,卖了个萌。

江寒眨了眨眼。

女朋友主动送上门?

好像让人有点期待啊,这要是不好好“欺负”一番,就白长这么大了……

这么一想,居然还有点小“激动”?

好吧,先别想太多了,不然……

江寒温和一笑:“嗯,那就说好了,一定要来,不来的是小狗。”

夏雨菲:“……”

接下来,两人又聊了一会儿。

11点,夏雨菲准时上床睡觉。

挂断视频后,江寒的心情已经安定了下来。

不管发生什么事,都要守护好夏雨菲,对自己来说,她就是最后的港湾。

让她开心,让她快乐,最好能与痛苦永远绝缘……

接下来,江寒就振作精神,继续看书、做题。

直到12点多,才累得一头栽倒在床上。

然后,眼睛一闭,人事不知……

一夜无梦。

第二天,江寒起床后,继续进行机器学习方面的研究。

在另一个世界,“机器学习”这门学科,在几十年的发展历程中,逐渐形成了各种流派。

其中江湖地位最高的,有“五大门派”。

分别是符号主义、贝叶斯派、进化主义、行为类比主义,以及后起之秀:联结主义。

其中,联结主义的代表理论,正是“人工神经网络”、“深度学习”。

而在这个世界中,除了“联结主义”,另外四个“山头”已全部被人占领……

想要在机器学习领域深耕,掌握现有的技术,也是十分必须的。

至少可以触类旁通,也可以在写作论文时,合理引用,避免重复造轮子……

所以,江寒打算将其他分支的技术,全部系统地学习一遍,为以后开展“神经网络”的后续研究,夯实基础。

今天,江寒打算研究的,是贝叶斯派的“镇派武学”:“概率图”算法。

概率图模型是机器学习的一个独特分支,是图与概率论的完美结合。

在这种模型中,每个节点表示随机变量,边则表示概率。

在长期发展中,概率图算法也诞生过许多辉煌的成果。

例如“马尔可夫模型”,在语音识别方面,就长期处于主导地位,同时也广泛用于各种序列数据分析问题……

江寒先上网查找了一番,将所有关于“概率图算法”的论文收集起来。

一个半小时过去,总共搜集到了三十多篇相关论文。

江寒先粗粗地检阅了一遍。

其中不少东西,有点似曾相识,应该是以前听说过,或者重生前接触过。

但印象并不特别深,因为当年的自己,只对“深度学习”特别感兴趣。

其他方向基本上都是一带而过,并没有深入研究。

江寒开始一篇一篇地刷论文。

但很快他就发觉,“概率图”并不像预计中那么容易掌握。

难怪不少人一提到概率图模型,就谈虎色变,的确有点晦涩,不好理解。

按理说,以自己目前的脑力,研究现成的理论,并不该这么费劲。

可现在却有点举步维艰的意思。

究其原因……

江寒稍微一想,就明白了症结所在。

这个玩意对他来说,就是个全新的方向。

重生之前,对其完全没有了解,只是听说过有这么个东西。

对概念的掌握,以及各种细节的理解,连皮毛都算不上。

如果仅仅只是这样,那也就算了,只要稍微花点时间,迟早还是可以全盘悟透的。

但偏偏,他的数学基础虽然不错,深度却略显不够。

相关理论基础,以及知识的积累,也不算特别充足。

俗话说:巧妇难为无米之炊,所以……

好比做一道极度复杂的证明题。

有时候,明知结论是正确的,过程也很不容易推理。

而且更糟的是,许多必须用到的知识点,比如概念、定理、推论什么的,以前从来没有接触过。

这就相当于从采矿、种橡胶树开始学开车,不南辕北辙、难到极点才是怪事!

所以说,就算脑力提升了,也不是无所不能的。

再优秀的头脑,也需要一定的知识底蕴,才能发挥出应有的威能……

当然,要想解决这个矛盾,倒也不是特别困难。

一句话,学就完了。

俗话说:磨刀不误砍柴工……

接下来,江寒打算先好好充充电,学习一下相关的知识。

先打好基础,尤其是数学,回过头来再刷论文,才能事半功倍。

江寒先回了一趟学校,去寝室里翻找了一顿。

将从前买来的各种教材、参考书全都带走。

再次回到星河酒店后,就闭门不出,认真研读。

不得不说,他现在的学习效率十分惊人。

和以前比起来,不知提高了多少倍!

例如这本《概率论与数理统计》。

这是江寒从几十种同类教材中,精挑细选出来的,属于数学本科的专业教材。

比他以前学过的工科教材,涉及面更广,理论更深入,学习难度也更大。

一般的数学本科生,大约要用两到三个月刻苦攻读,才有可能学完。

至于能掌握多少,还要另说。

期末会不会挂科,还要看个人能力,再加上一点点运气……

而江寒呢?

只用了一个上午,就完全通读了一遍,并做完了书后全部习题。

以前很难理解的概念,一看就懂;许多复杂的推理过程,一想就通。

合上书以后,书里的知识点,也几乎全都历历在目,一点都没有遗忘的迹象。

而且还能举一反三、融会贯通。

课后习题基本没有他半分钟内解决不了的!

这样的学习效率,实在太吓人了。

看看时间已经中午,江寒就去2楼的餐厅饱餐了一顿。

饭后,江寒走出酒店,进入了附近的一个小区。

小区中央有个小广场,不少人在休闲、运动。

江寒在这里溜达了几圈,放松一会儿,也顺便消消食。

在这个过程中,他也没有停止思考。

一上午的《概率学与数理统计》没白看,关于“概率图”方面的问题,思考起来果然比原先顺畅了不少。

但可惜还是有点不够清晰、透彻。

江寒也不急躁。

毕竟现在这种情况,才是学习、科研的常态……

书河书屋推荐阅读:末日:赘婿重生,囤积亿万物资全球高考一宠成瘾:喵系萌妻,甜甜哒至尊兵王解甲国运婚配:开局获得无限宝石掌控全球:从制霸互联网开始神豪返现系统,屌丝逆袭网络神豪:打赏直播十倍返利星空舰队,从数据化开始四合院:我真不是大地主啊执宫我让企鹅悔改,开局直接制作战地都市欲望:疯狂的缠绵倾城凰后:陛下,高高在上大唐:开局与李二断绝父子关系!开局拒绝表白,校花悔断肠建立无上家族,从妩媚女房东开始三分熟蚀骨情:贺先生,别乱来盛宠小娇妻:傲娇总裁别误会财色带女儿净身出户,一首歌唱哭全网乱世谋:江山为祸暮日冬下(gl)首富从1997开始绝恋:相思比梦长开局绑定老婆,我竟有百倍返利?卦妻伏天氏盘点娱乐圈魔咒,明星都被整麻了战狱:我国主的身份让世界颤抖欢宠见家长我送暴徒,警察岳母人麻了纵横两界:我其实不想当帝皇龙族:从只狼归来的路明非一胎二宝:爹地债主我来啦一夜蜜婚:狼性总裁花样宠!战雏盛宠情深:男神让我撩撩!神豪:小学生才做选择,我全都要重回80年代,我觉醒了猎人系统重生1994:大国崛起龙邪四合院:似水年华退役特工:麻烦找上门灵幻穿越:从废柴开始斗破:开局迎娶云韵,我多子多福四合院:契约人生从武动乾坤开始签到
书河书屋搜藏榜:窃国狂赎萌妹穿越之北宋篇许你卸甲归田,你把我女儿泡了?甩了线上男友后我被亲哭了娱乐:重生豪门公子,玩转香江哑小姐,请借一生说话重生国民女神:褚少,心尖宠!我从黑洞归来全能大佬的马甲要藏不住了残暴王爷的黑月光枭宠毒妃:第一小狂妻以财养官:我靠炒股升官发财锦鲤老婆你好甜都市极品村医命运编织者:我能看透御兽命运!重生后我给女配当长姐重生爸铺路,位极人臣不是梦天才国医宁天林冉冉王妃每天都想继承遗产重生豪门:影后谁敢惹大小姐的贴身狂医晋江女穿到□□文草莽年代护花强少在都市聂先生告白请先排号星空舰队,从数据化开始路痴导游照亮他的心港片:我洪兴红棍开局干掉大佬B我能预测未来上神转角遇到总裁朕醉了直播地球之五十亿年重生之牡丹重生年代养大佬鲜肉影帝我煮青梅等你来我以邪恶护万家灯火不灭!犬马她们都说我旺妻太子殿下他对我图谋不轨重生之如歌岁月作精女配把反派撩到手了战婿当道蜜爱100分:首席,强势宠公子玉璃花之双翼
书河书屋最新小说:缅战兵王:从救小姨子开始本人魔女才不是你的魔法少女老师宦海扁舟这次我只想当一个综艺咖为求原谅,女神把我榨干了听说你是主角,我踩的就是主角都市隐藏先知我就想公司破产,奈何员工全是老六!让你接手钢铁厂,你居然卖军火!观想图网游:只有我能看见真实都市重生:我的仙帝修仙路列车求生:开局激活预知模块!异世之帝皇再临满门忠烈你退婚,我重回巅峰你悔啥?我的系统整天都想让我秃头乡野山村神医培养万千神邸,动物园成生命禁区从属性面板开始的超神级学霸糖运连绵:班花同桌又乖又萌我过气爱豆,和天后恋爱很合理吧我最恨的那个女人变成白虎后,逍遥野外山林暑假兼职,你实习单位是749?蒸汽异世:神秘结社华娱:从2016开始的顶流影帝法师进城务工都市寻宝记我按时收费的系统风暴:林风的荣耀崛起重生高考后,我签到成了神级黑客新开辟的钓点,怎么又暴露了你已天下无敌,下山为所欲为吧原来我修为已是这世界极限重生七零开局在破屋一路暴富如果我回到1997年重新开始猫星重生2016,开局狂赚百亿1955重生回到从前薛尘的逆袭修真路什么霸道校花,明明是暖心猫咪重生后,商业帝国信手拈来数据流御兽【异能】炒股赔钱才有生活费我刚中了五万亿不能做主角,那就当魔女高中毕业后,我激活了自律系统神奇世界之旅娱乐圈传奇:从借钱开始高武:满级悟性,一秒屠太古十凶双倍返还神豪系统加身